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In order to gain computational time and simplicity, transfer over rough and heterogenous surfaces is
most often modelled using the concept of an effective (flat) surface. In this paper, we are particularly
interested in mass transport by convection and diffusion over rough, heterogeneous and reactive surfaces
and we propose a model using first-order effective properties. The resolution of ‘‘local closure problems”
given by a domain decomposition technique, allows to link flow and surface parameters to effective prop-
erties of the modelled fluid/solid interface: d, the effective surface position, and keff , the effective reaction
rate. The effect on d and keff of the surface chemical and geometric properties, as well as the flow char-
acteristics, is then analysed, giving some indications for possible estimates in specific cases. Finally, the
obtained model is validated by comparison to direct numerical simulations.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of transport phenomena at the boundary between
a free fluid and a complex interface can be found in many applica-
tions: chemical engineering, geochemistry, bioengineering with
flow over biofilms to cite few examples. Numerous studies have
been done on the case of turbulent boundary layers over rough sur-
faces since the early experiments of [1]. Since this origin, it was
clear that the engineering practice would only require the knowl-
edge of some average properties and not the flow in details at the
roughness scale. This is also the case when one considers the prob-
lem of the interface between a fluid layer and a porous domain.
This problem was studied for heat [2], mass [3] and momentum
transfer [4–9]. Once again, it was found convenient for macro-scale
modelling purposes to introduce an effective boundary condition.

In this paper, we consider the case of a laminar boundary layer
over a rough, reactive surface. The phenomenology of the rough
surface configuration and the one of the porous boundary configu-
ration are very similar at the micro-scale (asperity or pore scale
geometry). In the cases of laminar flows over rough or porous sur-
faces, the surface is the locus of an enhanced momentum loss com-
pared to perfectly flat surfaces. For the considered laminar flows,
this loss is mainly due to viscous effects whereas in the previous
mentioned studies on turbulent cases the loss is caused by the
asperity induced pressure drag. One of the motivations of this work
was to improve the modelling of composite ablation in the aero-
space context. Indeed, during ablation, the surface of the composite
parts recedes. As this recession is not uniform, asperities appear at
ll rights reserved.
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the composite surface. Previous works [10–12] have been done on
the impact of mass diffusion on roughness on-set during ablation.
In this study, the roughness is assumed to have reached a steady
state for which the geometry in the moving reference frame does
not evolve anymore.

As this study is only one of the first steps towards a realistic
complete modelling of this phenomenon, the complexity of the
physics has been reduced. Thus, for simplicity, the fluid is assumed
to be viscous and incompressible and the system is isothermal. The
problem studied here, illustrated by Fig. 1, is to compute the mass
and momentum transfers over a rough surface R placed into a lam-
inar boundary layer.

Direct numerical simulations (DNSs) of such systems are avail-
able approaches when the characteristic lengths of the macro-scale
flow and the roughness have the same magnitude order: l=L ¼ Oð1Þ.
When l=L� 1, direct simulations are not achievable anymore. In
such cases, the behavior of the heterogeneities must be homoge-
nized. The homogenization procedure aims at replacing the detailed
properties of the surface by effective ones. These effective properties
refer to a fictive wall, which, placed in the same conditions than the
detailed heterogeneous one, shows the same macro-scale behavior.
Effective properties are not simply a pure mathematical concept. For
example, it is the effective reactivity of the surface which is mea-
sured experimentally when an experiment is driven at the L-scale.

The composite surface is the locus of an heterogeneous reaction
between a gaseous reactant A of concentration c and the solid. This
solid surface has a non-uniform reactivity. In the considered cases,
the reactant is assumed to be diluted into the fluid in such a way
that mass transfer has no direct impact on the momentum transfer.
In addition to the previous considerations, the roughness are sup-
posed to be small compared to the boundary layer thickness and
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Nomenclature

Roman symbols
a closure variable for the reactant concentration (dimen-

sionless)
Af fiber reactive area (m2)
Am matrix reactive area (m2)
A0;i area of R0 boundary (m2)
AR total reactive area (m2)
b closure variable for the reactant concentration (m)
c reactant concentration defined in X ðkg m�3Þeci reactant concentration deviation in Xi ðkg m�3Þ
ci reactant concentration defined in Xi ðkg m�3Þ
C0 reactant concentration defined in X0 ðkg m�3Þ
dr distance between two consecutive asperities (m)
D reactant diffusion coefficient ðm2 s�1Þ
Da ¼ kl=D, Damköhler number (dimensionless)
Daf fiber Damköhler number (dimensionless)
Dam matrix Damköhler number (dimensionless)cDa mean Damköhler number over the surface R (dimen-

sionless)
e1 unit normal vector linked to x (dimensionless)
e2 unit normal vector linked to y (dimensionless)
hr roughness height (m)
J mass flux exchanged over the reactive surface ðkg s�1Þ
k first-order reaction rate ðm s�1Þ
k0

eff effective reaction rate at y ¼ 0 ðm s�1Þ
kd

eff effective reaction rate at y ¼ w0
x ðm s�1Þbk mean reaction rate over the surface ðm s�1Þ

kf fiber reaction rate ðm s�1Þ
k0

low k0
eff estimate at low Da ðm s�1Þ

kd
low kd

eff estimate at low Da ðm s�1Þ
km matrix reaction rate ðm s�1Þ
l characteristic length associated to the asperities (m)
li Xi width (m)
L characteristic length associated to X (m)

n unit normal vector on R pointing toward the fluid
(dimensionless)

n0;i unit normal vector on R0;i pointing toward the wall
(dimensionless)

N total mass of reactant in the global domain (kg)
p pressure defined in X (Pa)
pi pressure defined in Xi (Pa)
~pi pressure deviation defined in Xi (Pa)
P0 pressure defined in X0 (Pa)
Re ¼ ULq=l, global Reynolds number (dimensionless)
Rel ¼ qshl2=l2, local Reynolds number (dimensionless)
rk reaction rate contrast (dimensionless)
Sc ¼ l=qD, Schmidt number (dimensionless)
u fluid velocity defined in X ðm s�1Þ
ui fluid velocity defined in Xi ðm s�1Þ
~ui fluid velocity deviation in Xi ðm s�1Þ
U0 fluid velocity defined in X0 ðm s�1Þ
U magnitude of u ðm s�1Þ
w closure variable for the fluid velocity in Xi (m)
w0

x distance between R0 and Reff (m)
x abscissa (m)
y ordinate (m)
yN effective surface position conserving N (m)

Greek symbols
d effective surface position (m)
d� ¼ d=hr (dimensionless)
k flow characteristic length (m)
l fluid dynamic viscosity (Pa s)
m fluid kinematic viscosity ðm2 sÞ
X global domain (dimensionless)
q fluid density ðkg m�3Þ
r stress (Pa)
R rough reactive wall (dimensionless)
- closure variable for the pressure in Xi (Pa s)
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the curvature of the surface is itself small compared to the
asperities. As a first consequence, we expect some discrepancy
between the developed model and actual results at the entrance
region of the boundary layer. This question will be looked at in Sec-
tion 5.

The boundary conditions that must be employed to build a di-
rect simulation, i.e., small-scale description, over such a surface
are well known. Therefore, without further considerations, we list
below the small-scale problems to be solved. The problem for the
momentum transfer is described by

qðu:$Þu� lDuþ $p ¼ 0 in X; ð1Þ
r � u ¼ 0 in X; ð2Þ
u ¼ 0 on R: ð3Þ

Let define Re the Reynolds number at the macro-scale by

Re ¼ ULq
l

; ð4Þ

where U is the magnitude of u and L is the flow macro-scale char-
acteristic length.

The problem for mass transfer can be summarized as

u � $c ¼ r � D$c in X; ð5Þ
� n � D$c ¼ kc on R; ð6Þ

where k is a reaction rate that may depend on the position on the
surface and n is the normal to R pointing from the fluid towards
the solid. Eq. (6) is the boundary condition for mass transport for
the case of a first-order irreversible reaction.

This paper intends to develop, in a unified formalism, the effec-
tive conditions for momentum and mass transfers over a rough,
reactive, non-uniform surface. ‘‘Homogenization” techniques pro-
pose to link the observed macroscopic behavior to the micro-scale
characteristics. The volume averaging approach [13] has been
widely used in order to define the effective boundary conditions
for a fluid-porous interface [6,5,7,14,15,9,3,8]. In these studies,
the interfacial region is described at a mesoscopic scale where
the solid and the fluid are replaced by a unique medium. The intro-
duced medium is characterized by local properties (such as perme-
ablility for instance) having smooth variations in the interfacial
zone. The meso-scale properties are defined as being local spatial
averages. By definition, the boundary is a singularity and this leads
to some mathematical complexity when manipulating volume
averages. While it is still possible to define spatial averages in this
zone, the constraints of the classical ‘‘bulk” volume averaging ap-
proach cannot be satisfied in general. Nevertheless, the effective
models obtained by the previously mentioned studies have shown
a satisfying ability to describe the experimental data.

Effective boundary conditions for flat impermeable but non uni-
form reactive wall have been obtained by [16] using a volume
averaging approach in the diffusive case. In order to extend this
work to more complex interfaces, the idea is to split the whole do-
main into subdomains as it will be explained later on. This concept
of domain decomposition was first introduced by [17] for the



Fig. 2. Multi-domain decomposition.

Fig. 1. Multiscale description of a laminar boundary layer over a reactive rough
surface.
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momentum transfer and it is extended in this paper for both
momentum and mass transfer in a unified formalism. In the stud-
ied case, l=L� 1, the fluctuations of velocity and concentration
introduced by the non-uniform wall are assumed to vanish far
from the fluid/solid interface. Based on this assumption, a multido-
main decomposition approach is conducted and an approximate
solution is obtained which allows to build an effective surface with
the associate effective boundary condition. These effective proper-
ties are explicitly linked to the surface structure and other fluid
physical properties. In this paper, first-order effective properties
are built. The effect of wall properties and transfer conditions on
the obtained effective properties is then discussed. Finally, in order
to validate the proposed models, numerical tests are presented in
the last section of this article.

2. Multi-domain decomposition

In order to study a finite domain, we limit X by an upper surface
Re and by side surfaces Rl. The boundary conditions on these sur-
faces are assumed not to impact the homogenization procedure.
Therefore, they will be given only in the application part. Of course,
we already mentioned the possible breakdown of the major
assumption made in this development, i.e., l� L, at some entrance
regions. It will be shown in Section 5 that this does not impact the
solution far beyond the entrance region, in our laminar case. In
addition, the surface R is supposed to have a negligible curvature
at the L-scale.

As mentioned before, the fluctuations of velocity and concentra-
tion vanish far from the wall and, at the L-scale these fields are
smooth. This suggests a decomposition of the whole domain X into
subdomains as illustrated by Fig. 2.

On the one hand, the domain X0 (with �0 quantities) corre-
sponds to the restriction of X where the variables are smooth.
On the other hand, the Xi (with �i quantities) domains contain all
the perturbation of the concentration and velocity fields. In the
asymptotic method formalism, this is seen as being the matching
of a function of a quickly varying variable in Xi domains with a
function of a slowly varying variable in the X0 domain. The direc-
tion e1 (x-coordinate) refers to the infinite flow direction. The
direction e2 (y-coordinate) refers to the macroscopic wall normal.
The third direction, e3, (z-coordinate) is transverse. If, as supposed,
the asperities are z-periodic, the reactive flow problem is periodic
in this direction and does not require any particular consideration.
In this work, the theoretical developments are written in 3D. For
practical reasons the numerical applications will be limited to 2D
(ðe1; e2Þ plane).

Let name R0 the boundary splitting X0 from the Xi domains
and R0;i the intersection of R0 and @Xi (boundary of Xi). The sur-
face dividing Xi from Xi�1 is denoted Rl;i. The exact position of R0

is not defined by an identified physical phenomenon. The choice
of R0 is nonetheless constrained by the fact that all the deviations
due to the non-uniformity of R in terms of roughness and chem-
ical reactivity must be contained in the Xi domains. This criterion
is equivalent to a condition of minimum distance (unknown at
this stage) between R and R0. Because the damping of the devia-
tion is smooth and the deviation is asymptotically tending to-
wards zero, the definition of such a distance remains subjective.
As R0 is an arbitrary frontier in a continuous physical domain,
the pressure, velocity and concentration must be continuous
across R0

U0 ¼ ui on R0;i; ð7Þ
P0 ¼ pi on R0;i; ð8Þ
C0 ¼ ci on R0;i: ð9Þ

For the same reasons, the mass flux and the stress must also be con-
tinuous. The stress continuity writes

n0;i � rðU0Þ ¼ n0;i � rðuiÞ on R0;i ð10Þ

with the stress tensor rðuÞ ¼ pIþ lðruþruTÞ. The continuity of
pressure leads to the following simplified expression for the stress
continuity:

n0;i � ðrU0 þrUT
0Þ ¼ n0;i � ðrui þruT

i Þ on R0;i: ð11Þ

The problems for the momentum and mass transfer in X0 can be
written as follows as being a spatial restriction of the problems in
X completed by the continuity conditions:

Pb Iu (in X0):

qðU0:$ÞU0 � lDU0 þ $P0 ¼ 0 in X0; ð12Þ
r � U0 ¼ 0 in X0; ð13Þ
n0;i � ðrU0 þrUT

0Þ ¼ n0;i � ðrui þruT
i Þ on R0;i; ð14Þ

U0 ¼ ui on R0;i; ð15Þ
P0 ¼ pi on R0;i: ð16Þ



S. Veran et al. / International Journal of Heat and Mass Transfer 52 (2009) 3712–3725 3715
Pb Ic (in X0):

U0 �rC0¼r�ðDrC0Þ in X0; ð17Þ
�n �DrC0¼0 on Rl; ð18ÞZ

R0;i

n0;i � ð�DrC0þU0C0ÞdA

¼
Z

R0;i

n0;i � ð�DrciþU0ciÞdA on R0;i; ð19Þ

C0¼ci on R0;i; ð20Þ

in which n0;i is the normal vector to R0;i pointing from the X0 do-
main towards Xi cell.

In the different Xi domains, the boundary conditions given by
Eqs. (14), (15), (19) and (20) must remain unchanged. The conser-
vation equations for the variables take the same form as in X.
Moreover, the fields are supposed to be pseudo-periodic at the l-
scale. This is equivalent to assume the transverse fluxes (crossing
Rl;i) to be negligible compared to the fluxes coming from R0;i. These
assumptions lead to the following problems:

Pb IIu (in Xi):

qðui � $Þui � lDui þ $pi ¼ 0 in Xi; ð21Þ
r � ui ¼ 0 in Xi; ð22Þ
ui ¼ 0 on R; ð23Þ
uiðxþ liÞ ¼ uiðxÞ on Rl; ð24Þ
piðxþ liÞ ¼ piðxÞ on Rl; ð25Þ
n0;i � ðrU0 þrUT

0Þ ¼ n0;i � ðrui þruT
i Þ on R0;i; ð26Þ

ui ¼ U0 at R0;i; ð27Þ
pi ¼ P0 on R0;i: ð28Þ

Pb IIc (in Xi):

ui � rci ¼ r � ðDrciÞ in Xi; ð29Þ
� n � Drci ¼ kci on R; ð30Þ
ciðxþ liÞ ¼ ciðxÞ on Rl; ð31ÞZ

R0;i

n0;i � ð�DrC0 þ uiC0ÞdA

¼
Z

R0;i

n0;i � ð�Drci þ uiciÞdA on R0;iC0 ¼ ci at R0;i: ð32Þ

At this stage, the problems allowing to compute the velocity and
concentration field in the two domains are obtained. One can
choose to solve numerically the problems in the Xi domains as writ-
ten above. Nevertheless, if this computation is done in every Xi do-
main and is coupled to the computation of the problem in X0, the
decomposition approach leads to limited or zero gain in the compu-
tational cost. To obtain a significant reduction of the computational
cost, one can try to build a generic solution on the Xi domains and
replace the computing between Xi and X0 by an effective boundary
condition.

A greater reduction of the computational cost can be obtained
by finding estimates of ui; pi and ci and then by obtaining a
‘‘closed form” for the boundary conditions involving U0; P0;C0 and
their derivatives. In this paper, a so called first-order estimate is
built and then compared to direct numerical simulations.

3. First-order effective laws

Wall laws for laminar flows given by asymptotic techniques
have been determined by Achdou et al. in diverse studies [17]
(steady incompressible Navier–Stokes flows), [18] (unsteady
incompressible Navier–Stokes flows). Jäger, Devigne and Mikelić
also worked on similar wall laws giving detailed mathematical
proofs [19–21]. In [17], zero-, first- and second-order laws were
defined to model flows over periodic rough surfaces. Using their
works as a basis, a different implementation of the effective surface
for momentum transfer is developed. The main difference appears
when the effective position of the surface is chosen and defined as
it will be detailed later.

In this section, estimates for the local fields of velocity, pressure
and concentration, respectively ui, pi and ci are built. Using the
closed form of the problems in X0, one shows that effective sur-
faces can be built both for momentum and mass transfer. The
effective condition aims at replacing the real surface R by a simpler
flat one over which effective boundary conditions are applied in or-
der to reproduce the behavior of the detailed system.

3.1. Momentum boundary condition

Let define ~ui the deviation of the velocity in the Xi domain by
the difference between the local velocity field ui and the global
field u:
ui ¼ uþ ~ui: ð33Þ
This global velocity field u, can be defined in X0 as U0 and in Xi as
being an expansion of U0 under the form of a Taylor development.
Under this consideration and neglecting variations of U0 and P0

along R0;i, Eq. (33) becomes

ui ¼ U0jy¼0 þ y � rU0jy¼0 þ
1
2

yy � rrU0jy¼0 þ � � �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
u

þ~ui: ð34Þ

It is interesting to notice here that the decomposition given by Eq.
(34) is reminiscent of the strategy proposed by the different
authors, i.e., as a decomposition in terms of smooth macro-scale
field and a fluctuation. The field u plays the role of the mesoscopic
field introduced in [5]. Nevertheless, in our approach this expansion
of the macroscopic field has a clear mathematical definition and we
do not assume here that this function represents a physical variable
coming from some averaging process.

Using this definition of ~ui, Eq. (3) implies that in terms of
magnitude

~ui ¼ OðuiÞ ¼ O
l
L

U
� �

ð35Þ

with U the magnitude of u. Injecting the definition of the devia-
tion ~ui, Eq. (33), into Eq. (21) gives at first order the following
relation:

0 ¼ ðu � rÞu� mDuþ q�1$p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

þðu � rÞ~ui|fflfflfflfflfflffl{zfflfflfflfflfflffl}
O U2

L

� �
þ ð~ui � rÞu|fflfflfflfflfflffl{zfflfflfflfflfflffl}

O U2
L

� � þð~ui � rÞ~ui|fflfflfflfflfflffl{zfflfflfflfflfflffl}
O U2 l

L2

� � � mD~ui|ffl{zffl}
O U2

L Re

� �þq�1$~pi; ð36Þ

where ~pi is the deviation of the pressure defined by analogy with ~ui.
As said before, the considered roughness is small compared to

the boundary layer thickness. This assumption leads to
ð1=ReÞ � ðl=LÞ. Therefore, Eq. (36) reduces to

�lD~ui þ $~pi ¼ 0: ð37Þ

By using the difference between Eqs. (22) and (2), one finally
obtains

r � ~ui ¼ 0: ð38Þ

Below, we look for the problem defining ui at first order, i.e., keep-
ing in the development of u in Eq. (34) the terms involving U0jy¼0

and r � U0jy¼0.

ui ¼ U0jy¼0 þ y � rU0jy¼0 þ ~ui: ð39Þ

There we see that the assumption l� L is crucial for the quality of
this approximation.



Fig. 3. Definition of the effective surface Reff .
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In the studied configuration, the free fluid region represents a
boundary layer. As a consequence, the normal variations close to
the wall are greater than the tangential ones ð@y � @x; @zÞ. More-
over, the velocity is mainly tangential and first-order terms in Eq.
(34) can be simplified to

y � rU0jy¼0 ¼ y
@U0

@y

				
y¼0

e1: ð40Þ

For the same reasons, the stress continuity on R0;i simplifies to the
continuity of the shear stress given by

n0;i �
@U0

@y
¼ n0;i �

@ui

@y
on R0;i: ð41Þ

From Eq. (23), the boundary condition on R is obtained as

U0jy¼0e1 þ y
@U0

@y

				
y¼0

e1 þ ~ui ¼ 0 on R: ð42Þ

An intermediate variable k having the dimension of a length, is
introduced by the following definition:

k ¼ �U0
@U0
@y

					
y¼0

: ð43Þ

As written before, the curvature of R0 is negligible. The normal to R0

is simply n0;i ¼ e2. The momentum flux continuity on R0 given by
Eq. (41) is rewritten as

@ui

@y
¼ @U0

@y
e1 on R0: ð44Þ

For the left-hand side, the use of the decomposition given by Eq.
(34) with the assumption of boundary layer flow, leads to

@ui

@y
¼ @U0

@y

				
y¼0

e1 þ
@~ui

@y
: ð45Þ

Collecting the obtained equations and adding the periodic con-
straints on the deviations, which are justified if the considered
X0;i domain is far enough from the beginning of the boundary
layer, the problem for the deviations may be summarized by
Pb II~u (in Xi):

� lD~ui þ $~pi ¼ 0 in Xi; ð46Þ
r � ~ui ¼ 0 in Xi; ð47Þ

ðkþ yÞ@U0

@y

				
y¼0

e1 þ ~ui ¼ 0 on R; ð48Þ

@~ui

@y
¼ 0 on R0;i; ð49Þ

~pi ¼ 0 on R0;i; ð50Þ
~uiðxþ liÞ ¼ ~uiðxÞ on Rl; ð51Þ
~piðxþ liÞ ¼ ~piðxÞ on Rl; ð52Þ

in which li is the Xi domain length. At this stage, the problem must
be closed by linking the deviation to the macro-scale behavior. This
is done by seeking the solutions under the following form:

~ui ¼ ðw� ke1Þ
@U0

@y

				
y¼0
; ð53Þ

~pi ¼ -
@U0

@y

				
y¼0
: ð54Þ

One obtains the following problem for the closure variables w and
-:Pb IIw (in Xi):

� lDwþ $- ¼ 0 in Xi; ð55Þ
r �w ¼ 0 in Xi; ð56Þ
w ¼ �ye1 on R; ð57Þ
@w
@y
¼ 0 on R0;i; ð58Þ

- ¼ 0 on R0;i; ð59Þ
wðxþ liÞ ¼ wðxÞ on Rl; ð60Þ
-ðxþ liÞ ¼ -ðxÞ on Rl: ð61Þ

A closed formulation of the problem Pb Iu can now be built using
the velocity continuity at R0 (Eq. (15)). This equation implies that
the deviation ~ui is zero on R0. Using this condition and the closure
equation Eq. (53), one simply has wjy¼0 ¼ ke1. Introducing the nota-
tion w0

x ¼ wjy¼0 � e1, we may write this last equation under the form
of a closed expression for the macro-scale field and its derivatives,
i.e., an effective boundary condition. We have

U0 ¼ �w0
x
@U0

@y
e1 on R0: ð62Þ

One must note that this effective boundary condition is similar to
the one obtained at first order in [22]. The problem for the
macro-scale flow U0 has been closed with a boundary condition
on R0. At first order, the Taylor development of the macro-scale
velocity U0 at y ¼ w0

x gives

U0ðw0
xÞ ¼ U0jy¼0 þw0

x
@U0

@y

				
y¼0
: ð63Þ

Using Eq. (62) in this development shows that the length w0
x repre-

sents the distance between R0 and a fictive surface Reff parallel to
R0 where the boundary condition becomes

U0 ¼ 0 on Reff : ð64Þ

This configuration is illustrated in Fig. 3. As explained before, the
position of R0 is somehow arbitrary and, as a consequence, the ob-
tained value for the length w0

x is not an intrinsic physical parameter
of the problem. For example, in the asymptotic limit of a flat surface
for R;w0

x would be equal to the distance between R and R0. In order
to build a more meaningful distance, it is more convenient to define
d as being the distance between the lower part of R and Reff . In addi-
tion, the no-slip boundary condition, associated to Reff , is easier to
apply than a wall law where the velocity boundary condition on
the effective surface depends on its derivatives (as it is done in
the work of Achdou et al., e.g., [17]).

One can note that in Pb IIw the viscosity l only acts as a scaling
of the pressure deviation -. As a result, the w field depends only
on the roughness geometry and not on the flow properties. Thus,
for the previously considered system and for a periodic rough sur-
face, the effective length d will be uniform and independent of the
local Reynolds number.

At this step, the procedure for the momentum transfer can be
summarized as follow:

(1) The global domain X is divided into a macro-scale subdo-
main X0 and a collection of micro-scale subdomains Xi.

(2) An estimation of the momentum transfer in the Xi domains
is built as being the sum of an asymptotic expansion of the
macro-scale flow and a deviation term.

(3) The deviation has been linked to the macro-scale flow using
closure variables.
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(4) The solving of the closure problem leads to the definition of
an effective surface Reff (its position) and the effective
boundary conditions.

(5) The closed problem for the momentum transfer at the
macro-scale can be written now as

qðU0 � $ÞU0 � lDU0 þ $P0 ¼ 0 in X0; ð65Þ
r � U0 ¼ 0 in X0; ð66Þ
U0 ¼ 0 on Reff : ð67Þ

Here our choice of Reff as the effective surface implies Eq. (67).
We remind the reader that other choices are possible that may re-
sult in a Navier-like wall law.

In the next section, this method will be used once more in order
to obtain an effective surface and boundary condition for the mass
transfer problem.
3.2. Mass boundary condition

In Pb IIc , the velocity in the Xi domains is ui. The previous sec-
tion showed how estimates for the velocity could be built. There-
fore, as momentum and mass transfers can be uncoupled, it is
chosen to write the mass transfer equations in Xi using the global
velocity u.

In this part, the previous procedure is used to obtain the effec-
tive boundary conditions for mass transfer. Under the same
assumptions than for the momentum ‘‘homogenization”, one tries
to find an approximated solution of the problem by introducing the
following estimate for ci:

ci ¼ C0jy¼0 þ y
@C0

@y

				
y¼0
þ ~ci: ð68Þ

As a consequence, the different equations in Pb IIc can be rewritten
as follows. Eq. (29) becomes

v@C0

@y

				
y¼0
þ u � r~ci ¼ r � ðDr~ciÞ ð69Þ

and Eq. (30)

�n � D
@C0

@y

				
y¼0

e2

 !
�n �Dr~ci¼ k C0jy¼0þy

@C0

@y

				
y¼0
þ~ci

 !
on R;

ð70Þ
in which eci is the concentration deviation term similarly defined as
for the velocity, Eq. (68).

Adding the continuity condition across R0;i and the periodicity
constraint, the problem for eci becomes

Pb II~c (in Xi):

v@C0

@y

				
y¼0
þ u � r~ci ¼ r � ðDr~ciÞ in Xi; ð71Þ

~ciðxþ liÞ ¼ ~ciðxÞ on Rl; ð72Þ
~ci ¼ 0 on R0;i; ð73Þ

� n � D
@C0

@y

				
y¼0

e2

 !
� n � Dr~ci ¼ ð74Þ

k C0jy¼0 þ y
@C0

@y

				
y¼0
þ ~ci

 !
on R: ð75Þ

Given the properties of this system, one can seek a solution of this
problem in terms of

~ci ¼ aC0jy¼0 þ b
@C0

@y

				
y¼0
; ð76Þ

where a and b are first-order mapping variables.
We have from Eq. (75)

�n � D@C0

@y

				
y¼0
ðe2 þrbÞ � n � DC0jy¼0ra

¼ k C0jy¼0ð1þ aÞ þ ðbþ yÞ@C0

@y

				
y¼0

 !
ð77Þ

and Pb II~c may be transformed in two independent problems for a
and b. We have

Pb IIa (in Xi):

u � ra ¼ r � ðDraÞ; ð78Þ
aðxþ liÞ ¼ aðxÞ on Rl; ð79Þ
a ¼ 0 on R0;i; ð80Þ
� n � Dra ¼ kð1þ aÞ on R: ð81Þ

Pb IIb (in Xi):
v þ u � rb ¼ r � ðDrbÞ; ð82Þ
bðxþ liÞ ¼ bðxÞ on Rl; ð83Þ
b ¼ 0 on R0;i; ð84Þ
� Dn � e2 � n � Drb ¼ kðyþ bÞ on R: ð85Þ

At this point, one can note that b ¼ �y is solution of this previous
system of equations. As a result, ci is simplified as

ci ¼ ð1þ aÞC0jy¼0: ð86Þ

We are now in a position to use Eq. (19) to determine the boundary
condition at R0;i which gives a closed form of Pb Ic . We haveZ

R0;i

n0;i � ð�DrC0 þ uC0ÞdA ¼
Z

R0;i

n0;i � ð�Drci þ uciÞdA at R0;i:

ð87Þ

As the continuity of the concentration on R0;i gives ci ¼ C0. The pre-
vious equation simplifies toZ

R0;i

n0;i � DrC0 dA ¼
Z

R0;i

n0;i � Drci dA at R0;i ð88Þ

with n0;i ¼ e2:

D
@C0

@y

				
y¼0
¼

C0jy¼0D
A0;i

Z
R0;i

@a
@y

dA: ð89Þ

As mentioned before, the transverse mass fluxes are neglected com-
pared to the vertical ones. This assumption leads to the pseudo-
periodicity of the concentration fields at the l-scale. Thus, the flux
balance on Xi becomesZ

R0;i

n0i � DradA ¼
Z

R
n � DradA: ð90Þ

Eq. (90) can be transformed using Eq. (81):

�
Z

R0;i

n0i � DradA ¼ �
Z

R
n � DradA ¼

Z
R

kð1þ aÞdA: ð91Þ

Finally, the problem Pb Ic may be written at first order in the fol-
lowing closed form:

u � rC0 ¼ r � ðDrC0Þ; ð92Þ
� n � DrC0 ¼ 0 at Rl; ð93Þ

D
@C0

@y

				
y¼0
¼
�C0jy¼0

A0;i

Z
R

kð1þ aÞdA on R0: ð94Þ

As it was done in the previous section, imposing a condition in R0

is not fully satisfactory because of its arbitrary position. An effec-
tive surface for momentum transfer called Reff , was defined before
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as being the surface at which the macro-scale problem is
characterized by a no-slip condition. While other choices are
available, we think it is convenient to move the lower boundary
condition for mass transfer to this surface. This solution leads to
have the boundary conditions for mass and momentum transfer
applied on the same unique surface, which is obviously easier
for routine application of this approach, in particular for numer-
ical modelling. At first order, the macro-scale concentration on
Reff is (remember that it has been found that w0

x is the distance
between R0 and Reff )

C0jy¼w0
x
¼ C0jy¼0 þw0

x
@C0

@y

				
y¼0
: ð95Þ

As @C0=@y is not y-dependent, Eq. (94) rewrites

D
@C0

@y

				
y¼w0

x

¼ � C0jy¼w0
x
�w0

x
@C0

@y

				
y¼w0

x

 !
k0

eff ; ð96Þ

where k0
eff ¼ 1

A0;i

R
R kð1þ aÞdA.

Finally, let introduce kd
eff , the effective reaction coefficient relative

to Reff equal to

kd
eff ¼

k0
eff

1� w0
x

D k0
eff

: ð97Þ

This expression shows that kd
eff depends on the position of Reff

through w0
x , but not on the position of R0, as k0

eff varies with the po-
sition of R0. Using the fact that n ¼ e2, the boundary condition on
Reff finally writes

�n � DrC0 ¼ kd
eff C0 on Reff : ð98Þ

A closed smoothed form of the mass and the momentum transfer
over a rough reactive surface has been obtained. For practical
implementation of the homogenized problem, it has been chosen
to move the boundary conditions on a same surface for both prob-
lems. With such a choice, the obtained smoothed problem takes the
form of a micro-scale problem. For this reason, the implementation
of the macro-scale problem can be easily spread on commercial
codes and used in industrial context.

The effective boundary conditions were built in order to obtain
the average behavior of the studied variables. Therefore, there is
no reason that the effective surface Reff defined by the momentum
transfer problem satisfies the conservation of the total ‘‘mass‘‘R

X c dV . In the last part of this article, this error will be estimated
numerically. It will be shown that the mass loss is reasonably
acceptable and can be neglected. Details on the mass loss deter-
mination can be found in Appendix A. If the mass loss becomes
a problem for a particular application, it is possible to use another
definition of the effective surface position for the mass transfer
problem that will satisfy this condition. The effective boundary
condition will therefore change its value following Eq. (95)
through (98). Another possibility, which could prove interesting
if transient phenomena become important, is to adopt a new
point of view, with the introduction of an excess surface concen-
tration. Nevertheless, the development of such a model is beyond
the scope of this paper.

Finally, the homogenization technique for the mass transfer
problem can be summarized by the following steps:

(1) Similarly to the procedure for momentum transfer:
Fig. 4. Examples of cells used to obtain results shown in Fig. 5.
� The domain X is decomposed in X0 and Xi domains.
� An estimate of the concentration is built in the Xi

domains, as being the sum of an asymptotic expansion
of the macro-scale concentration and a deviation term.

� The deviation is linked to the macro-scale concentration
using closure variables.
(2) The solving of the closure problem leads to the definition of
an effective reaction rate, k0

eff at R0.
(3) In order to link the two modellings (momentum and mass),

the effective surface is chosen to be unique. In order to keep
the no-slip condition for the flow problem, a new effective
reaction rate is defined over Reff : kd

eff .
(4) The closed problem for the mass transfer at the macro-scale

is then written

u � rC0 ¼ r � ðDrC0Þ; ð99Þ
� n � DrC0 ¼ 0 at Rl; ð100Þ
� n � DrC0 ¼ kd

eff C0 on Reff : ð101Þ
4. Effective boundary conditions: numerical results

In the previous section, we have introduced two macro-scale
models using the concept of an effective surface. The position, d,
and effective boundary conditions have been derived from the do-
main decomposition idea, in particular an effective reaction rate
has been obtained, keff . The purpose of this section is to analyse
the impact of the different parameters, such as surface geometry
and chemical characteristics, or flow properties, on these effective
values. Parametric numerical simulations are conducted over ele-
mentary cells to solve Pb IIw and Pb IIa. Results of this study are
the following.

4.1. Effective position of the surface

The geometry of the asperities and their density over the sur-
face have a great impact on the position of the effective surface,
d. An interesting parameter is the ratio between d and the rough-
ness height, that we will call d�. Its evolution in function of the
roughness shape, the roughness density and height is studied. Re-
sults of numerical simulations conducted for Pb IIw in different
elementary cells are summarized in the following figures from Figs.
4–7. First, three symmetrical roughness geometries are studied:
cones, semi-ellipses and rectangles. In Fig. 5, d� is given for differ-
ent distances between two consecutive asperities, dr , and height,
hr . The surface geometries are illustrated in Fig. 4.

Parameter d� controls the ability of the fluid to flow between
consecutive asperities. When the roughness density is high (i.e.,
distance between roughness is small), the fluid has difficulties to
flow between asperities. As a consequence, the position of the
effective surface will be nearly equal to the roughness height. This
is illustrated in Fig. 5, which shows that d� is close to one for low dr .

On the same figure, one can see that a steeper asperity opposes
more resistance to the flow. For example, with identical hr and dr ,
changing the roughness shape from a triangular one to a rectangu-
lar one increase the steepness as well as the value of d�. Further-
more, for unchanged shape and dr , d� also increases with hr .

On the opposite, when dr increases, the flow meets lower resis-
tance. As a result, d� decreases and will tend to zero for large values
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of dr . In this particular case, one asperity is far enough from its pre-
vious neighbour to see an unperturbed upstream flow.

Dissymmetrical surface geometries give similar results. Fig. 7
represents the variation of d� in function of the triangle top abscis-
sa, xt , as shown in Fig. 6. It shows that steeper asperities give high-
er positions of the effective surface. It is important to note that, as
Pb IIw is symmetrical with x, the evolution of d� with xt is also
symmetrical.

To sum up, these results show that, unfortunately, the position
of the effective surface cannot be predicted easily without solving
the closure problem Pb IIw, except in two extreme cases. The first
one is when the roughness are overlapping. Parameter d� will tend
to one. The second one is when dr is large enough to have d� close
to zero. Besides these two limiting cases, it is required to solve the
‘‘closure problem”.
4.2. Effective reactivity

In this part, we are particularly interested in the effect of chem-
ical properties of the surface and flow characteristics on the effec-
tive reaction rate. The studied solid represents a composite. The
chemical properties of the surface are limited to the reactivity of
the matrix, km, and the fibers, kf . For this analysis, two parameters
are interesting: the mean value of the Damköhler number over the
surface and the contrast between the reactivity of the fibers, and
the matrix. The nomenclature used is

cDa ¼ Daf Af þ DamAm

Af þ Am
with Daj ¼

kjli

D
; ð102Þ

rk ¼
km

kf
¼ Dam

Daf
; ð103Þ

where Af (resp. Am) is the surface of the fibers (resp. matrix) in con-
tact with the flow. Similarly, an averaged reaction rate can be de-
fined, k̂, and will be useful in the search of keff estimates

k̂ ¼ kf Af þ kmAm

Af þ Am
: ð104Þ

Flow conditions are characterized by the micro-scale Reynolds
number and the Schmidt number defined by

Rel ¼
qshl2

l2 ; ð105Þ

Sc ¼ l
qD

: ð106Þ

The relationship between the global Reynolds number (defined in
Eq. (4)) and the local one is

Re ¼ O
L
l

� �2
 !

Rel: ð107Þ

High local Reynolds numbers imply that the model assumptions are
no longer valid. High value of Rel leads to l=L2 � Re, which is equiv-
alent to l=L� Re as l=L < 1. In this case, terms neglected in Eq. (36)
cannot be neglected anymore. Some special attention will be given
to this fact in the analysis of the next results.

The dependence of the effective reaction rates k0
eff and kd

eff on
these different non-dimensional numbers is studied. Numerical
simulations are done for the closure problem of variable a over ele-
mentary cells with a semi-ellipse roughness shape.
4.2.1. Effect of the surface chemical characteristics
Firstly, simulations are conducted for pure diffusion ðRel ¼ 0Þ,

avoiding possible effects of the flow properties. The impact of the
mean Damköhler number and the reactivity contrast on k0

eff are
illustrated in Fig. 8. This figure shows two limits for the effective
reaction rate k0

eff . When the mean Damköhler number is small,
the reactivity of the surface is low. As a consequence, the concen-
tration will be nearly constant all over the cell. At the zeroth order,
the closure variable is zero over the cell, giving the following
expression for the effective reaction rate at R0:

k0
eff �

1
A0;i

Z
R

k dA: ð108Þ
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Therefore, k0
eff can be estimated easily as

k0
eff �

k̂AR

A0;i
where AR ¼ Af þ Am: ð109Þ

This approximation is called k0
low. One can note that this estimate do

not depend on the position of R0, contrarily to k0
eff . This is the con-

sequence of the previous zeroth-order approximation.
While this estimate of k0

eff for low Damköhler number is differ-
ent from the ratio D by w0

x , the second effective reaction rate kd
eff (cf.

Eq. (97)) has a defined limit. It can be written

kd
eff � kd

low ¼
k0

low

1� w0
x

D k0
low

: ð110Þ

As for kd
eff ; k

d
low depends on the position of Reff through w0

x . This new
estimate does not exist when k0

low ¼ D=w0
x , but this case cannot ap-

pear for low Damköhler number. Explanations can be found in
Appendix B.

The second limit appears when the Damköhler number is high,
the concentration close to the reactive surface is nearly equal to 0.
In this case, the reaction rate k0

eff also tends to a limit value which
depends on the surface geometry.

Increasing the second parameter, the reactivity contrast de-
creases the value of k0

eff . As a consequence, the limit for high Dam-
köhler numbers appears for higher cDa values. Another point
illustrated by this figure is that the contrast between the reactivi-
ties modifies the evolution of k0

eff with cDa. For a same cDa, a higher
rk implies that the matrix has a stronger impact on the reaction at
the surface. The fibers start to play a role in this exchange for high-
er Damköhler numbers when rk increases. Nevertheless, the sec-
ond limit for k0

eff at high cDa does not depend on rk.
Fig. 9 illustrates the evolution of the ratio k0

eff over k0
low with the

mean Damköhler number. As expected, a good agreement is given
between k0

eff and its estimate for low cDa. The graphs of Fig. 9 also
show the fact that the contrast between the reactivities has nearly
no impact on the ratio of k0

eff over k0
low. This result seems correct as

for the case of low cDa at the zeroth order, the impact of matrix and
the fibers is given by bk.

Tests with other geometries point out the dependence of the
effective reaction rate with the surface shape (cf. Fig. 10). Fig. 10
shows how k0

eff over k0
low evaluates with the mean Damköhler num-

ber for different distance between asperities, dr . Increasing this dis-
tance moves the curve forward.

These results were obtained in the purely diffusive case. In the
following section, we analyze the impact of the velocity field on the
effective reactivity.
4.2.2. Effect of the flow properties
Previous work [23] on direct numerical simulation of laminar

flow over reactive flat walls has shown that the competition be-
tween diffusion and advection (described by the Pe number) has
poor impact on the consumed flux. In this study, the couple
ðRel; ScÞ is chosen to parametrize the impact of flow characteristics
on the effective reactivity.

In Fig. 11, the impact of this couple on the ratio of the effective
reaction rate with convection over the one obtained in the purely
diffusive case is illustrated by different graphs. Sc varies between
0.5 and 2, and Re between 1 and 5000. Results show that the Rey-
nolds number has nearly no impact on the effective reaction rate,
except for high values (Fig. 11) and confirm the trends obtained
by direct simulation by [23]. This trend is also similar to the one
observed for a reactive flat surface [24]. When the surface is flat,
the transition between the diffusive regime and the convective re-
gime appears for lower Reynolds numbers than for a rough surface.
This is consistent with the fact that the asperities tend to decrease
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rapidly the velocity in the surface neighborhood, thus increasing
the diffusive regime as compared to the case of a flat surface.

For local Reynolds numbers inferior to 500 and Schmidt num-
bers lower than 2, kd

eff can be estimated by the value of kd
eff in pure

diffusion with an error of less than 1%. For higher values of Rel, the
difference increases. At these high Reynolds numbers, the flow
modifies significantly mass transport due to recirculations be-
tween asperities. As illustrated in Fig. 12, the total flux lines of var-
iable a show that the flux is no longer normal to the surface, like for
pure diffusion transfer. However, the variation of kd

eff at high Rel is
obtained for conditions that violate our initial assumption. Indeed,
as it has been explained previously, these high values of Rel imply
really high values of the global Reynolds number and thus a turbu-
lent boundary layer. In this case, the model detailed before is no
more valid. Consequently, in a laminar boundary layer situation,
it can be concluded that a good estimate of kd

eff is the value of kd
eff

obtained for pure diffusion. The closure problems can be simplified
accordingly.

The Schmidt number also affects kd
eff . As illustrated by the differ-

ent graphs in Fig. 11, when the Schmidt number decreases the
transition between the diffusive regime and the convective one is
Fig. 12. Total flux lines of v
delayed. This result is expected as a decrease in Sc is equivalent
to an increase in the molecular diffusion coefficient. Consequently,
the transport by diffusion has more impact and extends the diffu-
sive regime to higher Reynolds numbers. Nevertheless, in most
applications, the effect of the Schmidt number on the effective
reaction rate is not important and can be neglected.

To conclude, these results show that the closure problem Pb IIa

can be simplified by dropping the advective terms, as
kd

eff � kd
eff pure diffusion. In addition, simulations in the pure diffusive

regime point out limits for low and high Damköhler numbers.
For low Da, kd

eff can be estimated quite easily with kd
low. In the next

section, validation tests are conducted using this approximation of
the effective reaction rate.

5. Numerical validation

Validation tests were done over the systems presented in
Fig. 13. The rough surface is preceded by a flat and inert zone in or-
der to have a developed boundary layer over the asperities. The
reader should keep in mind that the first-order model described
previously is only valid in these conditions (boundary layer flow
and pseudo-periodicity). The flat zone remains unchanged after
modelling, introducing a small step at the beginning of the asper-
ities localization. Parameter d gives the height of the step. This
method differs from the one used in the work of Achdou et al.,
where the effective surface covers the flat surface of the wall and
the rough one.

External boundary conditions are similar between the real sys-
tem and the modelled one. Simulations over the detailed surface
are done with a mesh of 34,369 elements with a minimum element
quality of 0.49, compared to 15,440 elements with a minimum ele-
ment quality of 0.52 for the simulations with the effective surface
(cf. Fig. 14). In term of computational cost, simulations over the
effective surface is two to four time more rapid than DNS over
the detailed surface. The effective properties are obtained from
the closure problems described previously.

At first, we compare the velocity fields obtained from the de-
tailed simulation to the one with the effective surface. Figs. 15
and 16 show a good agreement between velocity fields. The results
given with the effective surface are similar to the ones given over
the rough wall, not taking into account the local fluctuations in
the close surface neighborhood.

An interesting point is to prove that a specific treatment of the
roughness effect is indeed necessary. Therefore, the velocity fields
ariable a with Sc ¼ 1.



Fig. 14. Meshes used for DNS and simulation with the first-order model.

Fig. 13. Schematic representations of the different domains and boundary conditions used for validation tests. Upper figure: DNS, lower figure: first-order model.
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are also compared to the one obtained for a flat surface at y ¼ 0.
The velocity profiles are shown in Fig. 16. As expected the flat sur-
face has a velocity profile very different of the one given by the
rough surface. As a consequence, we may conclude that modelling
taking into account roughness effect is indeed necessary. It is
attractive to find that this model with an effective surface is a sim-
ple and good way to reproduce the actual velocity field on the
whole domain.
Mass transfer is then added to this model as described before.
The following results are obtained. Fig. 17 illustrates the good
equivalence between the actual concentration field, i.e., the calcu-
lation with the rough surface, and the one given with the use of keff .
Contours are well superposed except in the region before the step.
Besides the comparison of the concentration field, the mass flux
absorbed at the surface, J, and the total mass, N, are also studied.
The errors observed on these two values are presented in Table



Fig. 15. Velocity field contours for the rough initial domain and the effective domain, for Re ¼ 10.
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Fig. 16. Velocity profile at y ¼ hr for a flow with Re ¼ 100.

Table 1
Error commited on the total mass and the mass flux exchanged over R.

Re ðRelÞ cDa rk Error on J Error on N rk Error on J Error on N

10 (0.1) 0.01 1 0.00267 0.0108 10 0.00889 0.0111
10 (0.1) 1 1 0.00129 0.00303 10 0.0101 0.00988
10 (0.1) 10 1 0.000242 0.00160 10 0.00489 0.00536
100 (1) 0.01 1 0.00261 0.0109 10 0.00881 0.0110
100 (1) 1 1 0.000864 0.00327 10 0.00832 0.00470
100 (1) 10 1 0.00249 0.000065 10 0.00423 0.00190
1000 (10) 0.01 1 0.00342 0.0111 10 0.00968 0.0111
1000 (10) 1 1 0.00550 0.00533 10 0.00862 0.00549
1000 (10) 10 1 0.00463 0.00103 10 0.00953 0.00170
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1. The effective model gives values similar to DNS values for J and N
with less than 1.1% error. In the case of low Damköhler numbers
ðcDa ¼ 0:001Þ, the approximation of the effective reaction rate is
also tested. The results of Table 2 show that this estimate only
introduce a slight difference on the error committed on J compared
to the initial errors obtained with kd

eff . This difference on J-errors in-
Fig. 17. Concentration field contours for the rough initial domain and the effec
creases with the Damköhler number, e.g., cDa ¼ 0:01; Jerror < 4:5%

compared to the 1% obtained with the true effective reaction rate.
Consequently, the estimate kd

low should be used carefully depend-
ing on the final expected error level.

Both results are satisfactory and directly link to the fact that
there is some errors committed on the mass transport close to
the step. The modelling of mass transfer is not well adapted for
the step region (i.e., x � 0) and the comparison of the concentration
contours has already shown it. This was expected, since the model
has been developed for pseudo-periodic asperities and the step
zone does not match this condition. As a result, some errors are
introduced. Nevertheless, the effective model does a very good
job in predicting the velocity and the concentration fields.
tive domain, for a flow entrance velocity of 10 m s�1; Daf ¼ 1 and rk ¼ 5.



Table 2
Error commited on the total mass and the mass flux exchanged over R using the estimate of keff for low Da.

Re ðRelÞ cDa rk Error on J Error on N rk Error on J Error on N

kd
eff 10 (0.1) 0.001 1 0.00270 0.0112 10 0.00889 0.0112

kd
low 10 (0.1) 0.001 1 0.00599 0.0112 10 0.0123 0.0112

kd
eff 100 (1) 0.001 1 0.00265 0.0112 10 0.00884 0.0112

kd
low 100 (1) 0.001 1 0.00596 0.0112 10 0.0123 0.0112

kd
eff 1000 (10) 0.001 1 0.00338 0.0112 10 0.00972 0.0112

kd
low 1000 (10) 0.001 1 0.00670 0.0112 10 0.0132 0.0112
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6. Conclusion

The objective of this work was to model momentum and mass
transfer at the interface between a fluid phase and a rough, heter-
ogeneous and reactive surface. This study was limited to the case
of a laminar boundary layer flow over a pseudo-periodic rough sur-
face, locus of a chemical reaction.

The technique to approximate the actual detailed solution was
based on a domain decomposition idea involving a global domain
and ‘‘roughness” unit cells. A first-order estimate of the link between
the concentration and velocity fields in global domain and the unit
cells was proposed under the form of mapping variables obeying
two specific closure problems, one for each type of transfer. This al-
lowed to propose a simplified model featuring a flat effective surface
instead of the rough wall, on which new effective properties, in par-
ticular the effective reaction rates are entirely determined by the
solution of the so-called closure problems. Their values were then
analysed in function of the flow properties, as well as the surface geo-
metrical and chemical characteristics. From this analysis, it has been
concluded that assuming laminar boundary layer conditions, the
flow has nearly no impact on the effective reaction rate. As a result,
the closure problem for the concentration can be simplified to a pure
diffusive one. In addition, two limiting cases were found for low and
high Damköhler numbers. A finite limit for low bDa was determined
and used as an estimate for the effective reaction rate, kd

eff , without
major errors on the simulation results.

This model was tested through a comparison between DNS on the
heterogeneous surface and simulations with the effective surface.
Good agreements have been obtained between these different sim-
ulations. Velocity and concentration fields fitted very well, while
some small differences were observed due to the entrance region ef-
fect, i.e., the beginning of the boundary layer. In future works, some
special attention may be paid to the modelling of this step region.

As written in the introduction, this study is a part of a larger
work on the ablation phenomenon of composite materials used
in space technologies, even though it can be used in different engi-
neering fields. This study can be extended to different transport
mechanisms, more complex situations with, for instance, 3D pat-
terns. In addition, the recession of the interface should be taken
into account in the case of ablation.
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Appendix A. Mass loss

The Taylor development of the effective boundary condition at
y ¼ 0 to obtain the new boundary condition at y ¼ w0

x conserves
the flux exchange over R but not the total mass. This mass loss can
be estimated. For an homogeneous and flat surface the evolution
of the concentration towards the surface depends linearly with y:

CðyÞ ¼ C0jy¼0 1� k0
eff y
D

 !
; ð111Þ

in which ys is the position of the surface. The ‘‘total mass” becomes

Nys
¼ C0jy¼0 ysli �

k0
eff y

2
s li

2D

 !
: ð112Þ

If we assume the existence of an effective surface which conserves
N, the mass loss can be written

eN ¼ C0jy¼0 1� k0
eff ðyN þw0

xÞ
2D

 !
ðyN �w0

xÞli; ð113Þ

where yN is the position of this effective surface conserving N.
Appendix B. kd

eff low Damköhler number limit

If the expression k0
low ¼ D=w0

x is developed, it gives

kf Af þ kmAm ¼
D

w0
x
: ð114Þ

Using the definition of the averaged Dhamkohler number (cf. Eq.
(103)), it can be transformed intocDaD

li
ðAf þ AmÞ ¼

D
w0

x
: ð115Þ

The cell length, li, has the same order than Af þ Am giving this final
approximation

cDa � 1
wxjy¼0

: ð116Þ

As wxjy¼0 � 1, this particular case can only happen when cDa � 1,
which is the opposite situation of the limit k0

low which is valid forcDa � 1. Therefore, the estimate of kd
eff as written in Eq. (110) is de-

fined for any cDa � 1.
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[20] W. Jäger, A. Mikelić, Couette flows over a rough boundary and drag reduction,
Commun. Math. Phys. 232 (2003) 429–455.
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